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1.0 INTRODUCTION

Over the past twelve years since 1964, I have been called upon to perform tests
to determine the radar (lidar) cross section of several satellite retrodirector
arrays used in conjunction with laser ranging experiments performed by NASA.
These satellites have included BE-B, BE-C, GEOS I(A), GEOS H(B), GEOS III(C)
and TIMATION III. As a result of this testing I have become familiar with many
of the problems of designing and testing cube corner arrays. Much of the theory
behind these tests has not previously been published. I have therefore collected
many of my notes and assembled them into this document for the reader interested
in cube corner array performance and testing. It is hoped that this paper will
explain many of the questions left unanswered in a previous paper, "Design of
Retrodirector Arrays for Laser Ranging of Satellites," X-723-74-122. This
previous paper was intended as an introduction to cube corner array design
and discussed arrays made up of diffraction limited cube corners. In practice
the diffraction limit is seldom obtained due to manufacturing problems. There-
fore in dealing with most arrays we have a more difficult problem in determining
areas and gain functions.

The paper starts with section describing the satellite coordinate system
necessary to describe the location and orientation of each cube corner in the
array. The second section describes the method of optical testing. This is
followed by sections defining the gain function, computational methods for
deriving the gain function and experimental values for it. The velocity aberration
is derived as a function of satellite orbit, a complete method for cross section
evaluation is described, and finally the radar equation is described.

The methods used in this paper are analytical and do not employ computer
techniques. This approach has the advatage of giving good insight into the
problem. However, a computerized analysis is required to perform complete
analysis. Several computer methods have been utilized by various authors
with varying degrees of success, but, none of their programs have been documented
nor are any of the methods capable of accounting for manufacturing errors.
The author is presently working on a computerized analysis technique for
cube arrays which will be partly based on previous programs, but will extend
the analysis to include all of the effects described in this paper.
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2.0 SATELLITE COORDINATE SYSTEM

Most of the satellites used for laser ranging targets to date have been either

gravity gradient or otherwise stabilized so that one axis of the satellite remains
constantly pointed at the earths center. For a laser tracking mission it is de-

sirable to have the lidar cross section independent of the azimuth angle of the

satellite viewed from the tracking station. Therefore the retro-director array
is normally made as nearly as possible, a surface of revolution with constant
cross section for all azimuth aspects. Before continuing in the discussion of
retrodirector arrays, we must set up a definition of our frame of reference.

The position and orientation of cube corners in an array are normally specified
in a spherical coordinate system with a polar axis defined by the line between
the center of gravity of the spacecraft and the center of the earth as shown in
Figure 1. The zero reference for the polar angle 6 is the nadir of the satellite,
and azimuth angles when required are defined relative to the velocity vector of

the satellite with azimuth angles increasing in a counter-clockwise direction
when viewed from earth. If the satellite spins about the polar axis, an arbitrary
azimuth direction related to the structure of the satellite must be selected and
a time relationship between this azimuth and the velocity vector established.
However, in the case of spinning satellites, the designer normally makes the
array rotationally symmetric so that the cross section becomes a function of
polar angle 6 alone. In the most general case, a cube corner location may be
specified by three position coordinates (Rc , 6 , 0c) and two orientation coor-
dinates (n0, Pn ) which specify the direction of the outward normal from the prism
entrance pupil. The direction of the incident laser radiation may be specified
by two angles with respect to the satellite coordinate system (01, 01 )"

3.0 OPTICAL TESTING

In testing a satellite retrodirector array, we must determine the effective
reflective area, and the gain as a function of the incident laser radiation
coordinates. This is normally done as shown in Figure 2. The array is placed
in the beam of an autocollimator and the total energy reflected from the
array is compared to the energy reflected from a flat of known area and
reflectivity. From this measurement we can calculate the effective area of
the array. -It should be pointed out that the optical losses in the cube corners
are taken into account in this measurement method, and therefore no further
efficiency corrections are necessary. The second part of our test is to scan
the retrodirected intensity pattern in the collimator focal plane to determine
the far field point spread function. This is normally done with a pinhole on an
XY coordinate stage mounted in the collimator focal plane. Radiation passing
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through the pinhole is detected by a photomultiplier. Both of these tests must
obviously be done for all possible values of 81 and in the case of arrays which
are not azimuthally symmetric for all 01. Examples of the results of the re-
flective area and for field pattern tests are shown in Figures 3 and 4.

4.0 POINT SPREAD FUNCTION

We can compute the lidar cross section in the following manner. The far field
pattern is examined and an equation for intensity derived for it (Fig. 5)

I(,, 7) = HAeP(,, 7) (1)

where H is the incident irradiance, Ae is the effective area and P(Wq, 77) is the
point spread function which describes the relative intensities in the far field.
Since energy must be conserved

HAe ={2 I (, 7 ) bdd

= HA, P(, 7) dd (2)

Therefore the definite integral must equal unity. The definition of cross section
is

7(, -) = 47T I( 771 (3)

Substituting equation 1 into 3 we obtain

-r(P, 7) = 47 H = 477A P(, 7) = G(, 77) Ae (4)

Note that H, the irradiance has dropped out of the equation so that in our measure-
ments it is not necessary to maintain a calibration of the irradiance level.
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In making the photomultiplier scans of the far field patterns, there are many
unknown experimental parameters which make it difficult to measure absolute
values of intensity. Therefore relative intensities are plotted to an arbitrary
ordinate determined by the experimental parameters. The intensities are then
normalized by dividing their values by the ordinate at the (0, 0) position of the

far field. From these curves, a suitable point spread function P(q, 7)) must be
inferred.

5.0 COMPUTATIONAL METHODS FOR DERIVING THE POINT SPREAD

FUNCTION

The most obvious method for deriving the point spread function P( , 77) would be
to obtain the Fraunhofer diffraction pattern from the two dimensional Fourier
transforms of the cube corners in the array. The point spread function could
then be obtained by summing the amplitudes, squaring the sum and taking the
absolute value. The result would be proportional to intensity and we could obtain
P(p, -q) by a suitable normalization constant.

This has been done for an equilateral hexagon aperture by Smith and Marsh* who
obtain the following relation

I 1 sin I L sin /-z+- in v. - + sin _ ---- (5)10  X 2

where

k = 27T/ k

X = kt

Y = km

b L = X/3 ± Y v1

v± = X ± 2Y/v/

and 4f and m are the tangents of the rectilinear angles in the far field which for
small angles are equal to angles themselves.

R.C. Smith and James C. Marsh, Journ. Opt. Soc. Am. 64, p. 798, June 1974.
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The comparison of this equation against the measured intensity profiles shown
in Figure 4 clearly indicates that this does not provide a satisfactory explanation
of the actual intensity profiles.

In order to explain the actual patterns we must take the random manufacturing
errors into account. From "The Scattering of Electromagnetic Waves from
Rough Surfaces" by P. Beckmann and A. Spizzichino (Mac Millan 1963) we can
treat the cube corner as a rough surface at normal incidence with the following
equation

2  f 2 T2\j
2 rT2F exp (6)

<pp*> = e - 9 p + - 4

where

pp* =Ratio of mean scattered power in the direction specified
divided by the power in the specular direction for a perfectly
flat surface i.e. I(qb, 77)/I o (p. 29)*

g = [ 2 = k 2 02 for normal incidence (p. 82)*

p = Fraunhofer diffraction term (p. 82)*

T = Correlation distance k2 <<T 2 << A (p. 81)*

F = 1 = Geometry factor at normal incidence (p. 25-27)*

A = Surface Area (p. 78)*

v2 = (kp)2 for small anglesxy

Therefore the equation reduces to for small angles

S77) ek 2 0 2  2 77) + 7TT 2 -(kPT/2)2

Note that the subscript o refers to the quantities for a perfectly smooth surface.

Refers to page numbers where definitions in Beckman and Spizzichino are found.
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Some interesting results are that two terms, one for diffraction, and one for

scattering occur. While the diffraction term is a function of q and 77, the -k 2 2

scattering term depends only on P. The intensity is reduced by a factor e

by the randomness of the surface; however this is partially compensated for

by the scatter term. Since T 2 << A the scatter term is much smaller than the

diffraction term at q = 0 but will predominate as ' grows and the diffraction

term diminishes. Note also that the scatter term grows as A decreases which

is the same effect as seen for diffraction. Therefore as the cube corner is

tilted we would expect a non-symmetrical spreading due to diffraction, plus a

symmetrical spreading due to increased scatter.

The random errors in the dihedral angles cannot be taken into account by the

above equation since they violate the condition that T 2 << A. However for an

array of many cubes with random errors we would expect a Gaussian far field

pattern if diffraction and scatter could be neglected.

6.0 EXPERIMENTAL POINT SPREAD FUNCTIONS

To this point our discussion has not led to a definite conclusion as to what point

spread function we should expect. There is a strong tendency to expect a dif-

fraction pattern, or a normal distribution due to random errors depending upon

what magnitude of fabrication errors are assumed. However, tests have not

shown this to be true. Rather an equation of the form

I(P, 7n) _ e-CP/y (7)

I(0, 0)

where

b
2

1 - e2 cos 2 77

and

(b ) 2

appears to provide the best fit to the data.*

For planar arrays
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This equation predicts a point spread function whose iso-intensity contours are
ellipses with eccentricity E.

If we let

P(v, 77 2 e-C. / Y (8)
27b 2

Then it may be shown that

e-cP// dd 7 = 1 (9)

0  0  2nTb 2

as required by conservation of energy. The ellipticity of the pattern is caused
by the angle of incidence of the radiation at the cube corner. By our definition
of terms the radiation is incident in the plane containing 77 = 7T/2 so that the long
dimension of the intensity pattern will always be in the 7 = T/2 or 3 7T/2 direction
with

E f (e) (10)

where 0. is the incidence angle. Substituting E = 1.16 V-6 gives a good fit over
the range Oi = 0 to 8i = 7/4 which includes most angles of interest. Therefore

'l - 1.35 8.
P(p, 77, ei) = - 1e-C. 5 (11)

27Tb 2

where

2 =b2
1 - 1.35 0i cos 2 '7

The value of c/b can be found by examining the point spread functions at normal
incidence (6i = 0). Since only the ratio c/b enters the equation it is not necessary
to find them independently simplifying.

.3 5 1 - 1.35 pcos
P(, , = 2 2 e O P (12)

where p = c/b
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It should be noted that if the cube corner is not rotationally symmetric, the
point spread function will depend upon the azimuth of incidence Pi as well as

i. . For the Hexagonal cube corners used on most satellites the minor vari-
ations due to Oi are neglected.

Values of p for several satellite arrays determined by analysis of the far field
intensity patterns are shown in Table 1.

7.0 THE VELOCITY ABERRATION

Up to this point the need for a two dimensional point spread function has not been
made clear. The need arises because of the velocity aberration effect which is
a function of orbital position and the direction of the velocity vector with respect
to the transmitter/receiver axis. This effect causes the receiver to be located
at various points in the far field pattern as a function of the orbit and velocity
vector parameters.

If a satellite equipped with a cube corner array is moving with a velocity V'
normal to the transmitter/satellite axis, a Bradley or velocity aberration effect
causes the reflected beam pattern to be angularly displaced by an amount

2V'
2V- (14)

where c is the speed of light. Therefore, the reflected radiation pattern is not
centered on the transmitter, but is displaced by the angle v in the plane con-
taining the velocity vector and the transmitter/satellite axis.

However, for a satellite in circular orbit, the velocity vector will only be normal
to the transmitter/satellite axis when the satellite is at zenith. The more gen-
eral case is shown in Figure 6. This figure shows the satellite at zenith angle 8,
and altitude h. The satellite and transmitter are in the YZ plane with the trans-
mitter located at the point (o, o, Re) where R is the radius of the earth (6370 Km).
For purposes of our calculation the earth will be assumed spherical and the orbit
circular. The satellite is located at the position (o, msin 1 , r cos e ). Under
these conditions the slant range p is

p = rv - Re cos 6 (15)
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where

v = ii - (Re/r) sin2 0
r = Re + h

h = Satellite altitude
6 = Angle between z axis and slant range p

The angle between the slant range p and the radius r is denoted as 7 and is
equal to

y=- sin (16)
r

The orientation of the satellite reference system to the satellite/transmitter
axis can be specified by a polar coordinate system centered around the p axis
with Vp the angular distance from the axis and r its azimuth when viewed in
the satellite transmitter direction. The zero reference for 77 will be selected
as the -X direction. Therefore a gravity gradient satellite will have its gravity
gradient axis oriented in the direction

77 = 37r/2

Azimuth angles are measured counterclockwise.

In order to define the velocity vector, we must establish its direction and mag-
nitude. Since the vector is always in the plane normal to the radius r we need
only specify its direction by an azimuth which we will call w again referenced
to the -X direction.

The velocity normal to the p axis is

V' = V /cos 2  + 2 sin 2  (16)

and its direction is

77 = tan- 1 [v tan w] (17)

9



Two special cases are of interest. The first occurs when w = o or w. Under

this condition

V' =V and 7 = 0 (18)

This condition occurs at the highest point in a satellite pass and corresponds to

the maximum velocity aberration. Note that maximum velocity aberration can

occur at any zenith angle and that a pass through zenith is not required. The

second case of interest occurs when w = 7r/2 or 37T/2. When this occurs

V' = vV

For satellites in high orbits v 1 and V' = V.

This indicates that for satellites in high orbits, the velocity aberration is nearly
constant and independent of both w and 0.

In contrast, for low orbiting satellites, the velocity V' can vary from V at zenith

to nearly zero at the horizon.

The absolute value of velocity aberration is shown in Figure 7 as a function of
satellite altitude. Data for this curve are shown in Table 2. The variation in
velocity aberration with 0 and w is shown in Figure 8 for a 1000km orbit,
while Table 3 provides values for several orbit heights.

8.0 EVALUATING CROSS SECTION

We now have all the equations necessary to calculate the effective cross section
of a retrodirector array in orbit. The procedure is as follows. Using the data
on effective area and point spread function, compute cross section using Equa-
tion 4. The result will be an expression involving four parameters.

cr = f (at, 4 t, 7) (20)

Next, compute Of from Equation 16 (61 = y). If the cross section is a function
of 4~ compute P, . For non-rotating satellites Pg = o - 7T/2. For rotating

satellites a time function must be computed for relating ¢ to o. Using Equa-
tions 14, 16, and 17 compute qp, and 77. Substitute these vahes of the four pa-
rameters into Equation 20 to obtain the cross section. Note, that in order to

10



solve for a- we must have the altitude of the satellite, the zenith angle 0 and
the velocity vector azimuth w as given data.

We now have obtained the cross section of the satellite as a function of its orbital
position. However in order to use cross section we must apply the radar equa-
tion. Values of cross section are shown for most of the arrays in orbit in Table 5.

9.0 THE RADAR EQUATION

The classical radar equation is

ETGTGR-2(
S = GG2 (21)

(4m) 3 R 4

where

S = Received signal Energy
ET = Energy generated by transmitter
GT = Antenna gain of transmitter optics
GR = Antenna gain of receiver optics

x = Wavelength
= Radar (lidar) cross section of target

R = Range of target*

In practical operational conditions a loss factor for the transmission of the
receiver and transmitter optics To and a factor for atmospheric trans-
mission Ta must be included. Equation 21 becomes

E G G X2o0-T T
2

S = ET r0 (22)
(47T) 3 R 4

Of the parameters in Eq. 22 some are dependent upon the lidar system used,
some depend upon the propagation path, and one depends upon the target. In
practice, a critical value of S dependent upon the receiver system and noise
sources determines the required value of the right hand side of equation 22.

E G G 2 072

SC < :TT oR a (23)
(477)

3 R 4

p was used for target range in Section 7.
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If we define three parameters as follows

Ps ETGTGRT G 2 meters 2  Station Parameter

T
2

P _ a meters-4 - Path Parameter
P (47)3 R4

PT - meters 2  Target Parameter

then Eq. 23 simplifies to

Ps pP 2 1 (24)

The reason for defining the parameters in this manner is that each of these

three parameters is normally under the control of a different group. The track-

ing station operators can control P but P is usually controlled by the orbital

requirements of the spacecraft. The final parameter PT or simply c must be

optimized by the cube corner array designer to make the triple product as large

as possible but in any case greater than unity.

We will now analyze the three parameters.

The required signal Sc is determined by the number of photoelectrons detectable

by the detector circuitry. This number N is presently set at about 100 but can

vary depending upon ranging accuracy requirements and detector noise. Signal

energy is related to N by the following relation

S _ (hv) N (25)
C 77

where

hv = Energy of a photon
77 = Detector quantum efficiency

12



For the most common lasers (Ruby and Doubled Nd - Yag)

Sc = (2 .Sx05 - 9 ) 5 x 10-16 Joules (X = 0. 6 9 x 10- 6 m)0.05

(3 .8 x 10-19) 100
Sc = 0- = 1.9 x 10 - 16 Joules (X = 0.53 x 10 - 6 m)0.20

The antenna gain is controlled by the 1/e 2 power beamwidth desired (Assuming
a Gaussian beam profile) by the following equation

GT = 32/02 (26)

Receiver gain may be obtained from the classical formula (Dr = receiver
diameter)

GR = (27)

System losses T0 must be obtained by a careful analysis of the optical losses
in the transmitter and receiver optics.

For the laser tracking stations presently in use by NASA/GSFC the value of the
station parameter is

P = 5.11 x 1022 meters 2 = 227.1 dB meters 2  (28)

where the following station parameters were used

ET = 1.0 Joules
OT = 5 x 10 - 4 radians
D = 0.51 meters

X = 0.6943 x 10- 6 meters
To = 0.078

13



The path parameter depends upon two variables, satellite altitude and zenith
angle. For a circular orbit of altitude h

R = i(R e + h) 2 - (Re sin 8)2 - Re cos 8 (29)

where Re = Earths Radius = 6.37 x 106 m. The atmospheric transmission may
be computed by the following relation

7 =7 sec 9 (30)
a aO

where T 0 = zenith atmospheric transmission. Zenith atmospheric transmission
ranges from 0.75 at 0.53 x 10- 6 meters to 0.83 x 10 - 6 at 0.69 x 10-6 meters
under clear sky conditions but can of course drop to nearly zero under poor
visibility conditions. A value of 0.70 is normally used in calculations. The path
parameter can easily be evaluated on a desk type computer. A solution for an
orbital height of 1000 km is shown in Table 4.

14



Table 1
Values of the Constant p for NASA

Cube Corner Arrays

Satellite p

BE-B 2.16 x 104
BE-C 2.16 x 104
GEOS-I 2.00 x 10 4

GEOS-II 4.55 x 104
GEOS-C Not tested at writing date
Timation III Data not reduced

Table 2
Maximum Velocity Aberration as a Function

of Orbital Altitude

Altitude (Km) Velocity Aberration (Rad x 10 -6)

0 53
500 51.3

1,000 49.5
2,000 46.4
4,000 41.7
8,000 35.4

16,000 28.4
32,000 21.7
64,000 16.0

128,000 11.6
256,000 8.29
512,000 5.90

15



Table 3
Variation of Apparent Velocity as a Function of Zenith Angle (0)

and Velocity Vector (w) for Several Altitudes

h = 0 h = 1000 Km h = 10,000 Km

6 (Deg) w (Deg) V'/V 7 (Deg) V'/V 77 (Deg) V'/V p (Deg)

0 0 1.00 0 1.00 0 1.00 0
15 0 1.00 0 1.00 0 1.00 0

45 0.98 44 0.99 44 0.99 45
90 0.97 90 0.97 90 0.99 90

30 0 1.00 0 1.00 0 1.00 0
45 0.94 41 0.95 42 0.99 45
90 0.87 90 0.90 90 0.98 90

45 0 1.00 0 1.00 0 1.00 0
45 0.87 35 0.90 38 0.98 44
90 0.50 90 0.79 90 0.96 90

60 0 1.00 0 1.00 0 1.00 0
45 0.79 27 0.85 34 0.97 43
90 0.50 90 0.66 90 0.94 90

73 0 1.00 0 1.00 0 1.00 0
45 0.73 15 0.81 29 0.96 43
90 0.26 90 0.33 90 0.92 90

16



Table 4
Satellite Cross Section at Zenith

Max Velocity Effective Value Gain Cross
Range p Value Gain

Aberration Area* 104 Section Cross Section/(Range) 4
(m x 106 ) (x 10 )* (dB) ( 2 x 10)

(Rad x 106 ) (cm2 ) ( 2  106)**

1. BE-B 1.13 49 142 2.16 85.1 4.60 2.82 x 10 - '8
2. BE-C 1.00 49 142 2.16 85.1 4.60 4.60 x 1018
3. GEOS I (A) 1.95 46 1793 2.00 85.0 57.2 3.96 x 10 -18
4. GEOS II (B) 1.53 48 2147 4.55 86.7 100 18.2 x 10 '8
5. GEOS III (C) 0.93 50
6. TIMATION III 14.0 29 540 92.8 103 1.62 x 10-2

7. LAGEOS 5.90 38 257 86.0 10.8 8.91 x 10 -21
8. LUNAR ARRAYS 360 7.0 "1000 96.0 400 2.4 X 10 -26
9. STARLET 0.92 50 101 77.4 0.55 7.67 x 10 9

Effective Area and p value are computed for the satellite at zenith. The p value is used to compute the gain function by the following relation

G() =4 P(y) 47 p2 e-P =2p2 e.-P2n

At 0 a,=
**%
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Figure 2a. Optical schematic of test setup for measuring cube array area.
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Figure 4. Far field patterns for cube corners used on several satellites*.
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ALL CUBE CORNERS HAD 2.54 CM HEXAGONAL
ENTRANCE PUPILS
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Figure 6. Definition of parameters used in calculation of velocity aberration.
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Figure 5. Coordinate system for far-field intensity pattern.
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Figure 7. Maximum velocity aberration as a function of orbital altitude.
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Figure 8. Variation of apparent velocity as a function of zenith angle (9) and velocity

vector angle (wo) for near earth satellite (h = 1000 km)


